DIGITAL TWIN TECHNOLOGIES FOR SMART MANUFACTURING

Professor Xu, Xun (徐 句)

Department of Mechanical and Mechatronics Engineering

The University of Auckland

March 2022

Agenda

- Industrie 4.0 and smart manufacturing (CPPS)
- Digital Twin defined
 - Definitions/Applications/Models/Twinning methods
- International standard for DT framework
- Demonstrative cases

From Industrie 1.0 to Industrie 4.0 - the German vision

Cyber Physical System (CPS) in support of smart manufacturing

- Marry the virtual digital (cyber-twin/digital twin) world with the real physical world
- Total connectedness with intelligence
- Semantic machine-to-machine (M2M) communication
 - closed embedded systems
 - self-monitoring, self-healing, proactive communications with other machines and/or operators
- Cyber-physical production systems (CPPS)

Cyber Physical System vs. Internet of Things (IoT)

ENGINEERING DEPARTMENT OF MECHANICAL AND MECHATRONICS ENGINEERING

Digitalization levels and Integration intensity

Depending on the level of data integration between the physical and digital counterpart, we can have

- Digital Model
- Digital Shadow
- Digital Twin

They exist for different reasons and applications

Digital Model of a physical object

Digital Model is a digital representation of an existing or planned physical object that does not use any form of automated data exchange between the physical object and its digital counterpart.

Kritzinger, W, et al. "Digital Twin in manufacturing: A categorical literature review and classification", IFAC Papers On Line 51-11 (2018) 1016–1022

Digital Shadow of a physical object

There is an automated one-way data flow between the state of an existing physical object and its digital counterpart.

Kritzinger, W, et al. "Digital Twin in manufacturing: A categorical literature review and classification", IFAC Papers On Line 51-11 (2018) 1016–1022

Digital Twin of a physical object

- The data flows between an existing physical object and its digital counterpart are fully integrated in both directions.
- A change in the state of the physical object directly leads to a change in the state of its digital counterpart and vice versa.

Kritzinger, W, et al. "Digital Twin in manufacturing: A categorical literature review and classification", IFAC Papers On Line 51-11 (2018) 1016–1022

Define Digital Twins:-

"An integrated multi-physics, multi-scale, probabilistic *simulation* of an as-built system, enabled by *Digital Thread*, that uses the best available models, sensor information, and input data to *mirror* and *predict* activities/performance over the life of its corresponding physical twin."

E.M. Kraft, The US Air Force Digital Thread / Digital Twin – Life Cycle Integration and Use of Computational and Experimental Knowledge II. The Evolution of Integrated Computational / Experimental Fluid Dynamics, in: 54th AIAA Aerosp. Sci. Meet., 2016: pp. 1–22

Examples of Digital Twin

- Digital Twin for Smart Manufacturing
- Digital Twin of Products
- Digital Twin of Manufacturing Assets
- Digital Twin of People
- Digital Twin of Networks

The Role of Digital Twins in a Cyber-physical System

Development of a Digital Twin

- Building a high-fidelity digital mirror to describe the equipment
- Establishing the interaction between the equipment and its digital mirror
- Consolidating/converging the data from the physical space and virtual space to generate information in support of various applications

Digital Twinning Mechanisms

- Fieldbus networks
 - ControlNet
 - DeviceNet
 - Modbus-RTU or ASCII
 - Profibus / Foundation Field Bus
 - PROFINET
 - Modbus-TCP/IP
- Ethernet-based industrial networks
 - EtherNet/IP
 - EtherCAT
 - Time Sensitive Networks (TSN) (Ethernet IEEE 802.1)
 - Highway Addressable Remote Transducer (HART)
- Industrial wireless networks
 - Wireless Sensor Networks (WSN)
 - WiFi-based (IEEE 802.11
 - Bluetooth-based (IEEE802.15.1)
 - Zigbee-based (IEEE 802.15.4)
- Other technologies
 - MQTT, OPC UA, MTConnect

DEPARTMENT OF MECHANICAL AND MECHATRONICS ENGINEERING

Waipapa Taumata Rau

NEW ZEALAND

ENGINEERING DEPARTMENT OF MECHANICAL AND MECHATRONICS ENGINEERING

Demonstrative Cases of Digital Twins at Laboratory for Industry 4.0 Smart Manufacturing Systems (LISMS)

- Digital twin of a custom product (bicycle)
- Digital twin of machine tool Cyber Physical Machine Tool
- Retrofitting a legacy Kuka robot for its digital twin

MIRAGE Modular Industrial Realtime Augmented Graphic Engine

A cross-platform mobile APP that is capable of managing multiple products.

Sen	sorHub	Robot		General	Fro		
Email		and the		Sample Period	i(ms) 0		
		ABB IRB 140	00 YuMi view	500	Rea		
Remember Me		A		Smooth Level	0		
		KUKA KR 3 A	GILUS VIEW	3	Ped		
Login	Register			Encoder P/R	0		
		Machine Tool		50	Ste		
		-	0 3rd VIEW	C Front Whee	el		
				C Rear Wheel			
		3D Printer		C Pedal			
		LuizBot TAZ	6 WEW	C Handle			
	14.0 ³ Laboratory for Industry 40 Sound Hamilacturing Systems	Q Search		Test			
User Management		Produ	ct	Sensor Configuration			
		Profile	25				
lanag	Jonnonie	1 101110		00111	garador		
IR	AGE			ŏ			

A configurable sensing module that gathers all the sensor data from product.

MIRAGE helps users monitor the running status of each equipment,. Digital twins are managed locally by the manufacturer using MIRAGE Station, and the configurations of particular facilities are kept by user with MIRAGE Sync. Representing each node in the Internet of Things (IoT), the sensing module MIRAGE Hub can be easily adapted for specific instruments.

MIRAGE Cloud is the centre of the system, which keeps all the profiles of a product. It facilitates the synchronization between the physical product and its corresponding digital-twin.

MIRAGE Station is connected to the digitaltwin of a product. Once synchronized with physical product, the digital-twin reflects the running status of the product.

Model Analysis and Synchronization

AR Visualization

-18-

Digital Twinning of a Bicycle

Mage: Chao Sala × stank: f24: analy: f24:

HMI

Physical and virtual components coupling

AR applications

Cyber-Physical Machine Tools for Smart Manufacturing

Cyber-Physical Machine Tool (CPMT)

- Deep integration of machine tool, machining processes, computation and networking
- Monitoring, embedded computations and control of the machining processes, with feedback loops in which machining processes can affect computations and vice versa

Features

system

acquisition

interactions

MTConnect-based Information Model of a Lathe

MTConnect-based CPMT Prototype

CPMT Digital Twin:

- Represents the capability, structure and real-time status of the machine tool
- Provide field-level data to HMIs and cloud-based services
- Monitors and controls the machine tool with built-in data analytics

Real-time Process Monitoring via CPMT DT

🛃 CPMT-Cyber Twin								_		\times
File Settings About										
Machine Tool Structure 1	Address	http://192.168.1.12	21:5000/current		Connect	Disconnect	Data Log			
⊡-http://192.168.1.121:5000/probe	(2)						Timestamp	Value	Sequence	^
	Machine Tool						11-26-2017 05-26-14 355509 AM	1 12696	29834	
- Device : Sherline-3Axis Maar factures : SarialNumber :	Name S	herline-3Axis	Manufacturer Sher	ine	Time Stamp 2017-	-11-26T05:26:17Z	11 20 2017 05:20 14:353505 AM	1.12030	20041	
Component : Aves Type : Aves	Controller						11-26-2017 05:26:14:455730 AM	1.45142	29841	
- Component : C Type : Rotary	Power	ON	Execution	ACTIVE	Controller Mo	ode AUTOMATIC	11-26-2017 05:26:14.555909 AM	0.964/2	29849	_
Name : Sspeed Data : SAMPLE Type : SPINDLE_SPEED							11-26-2017 05:26:14.656108 AM	0.75382	29857	
Name : vibMaxMag Data : SAMPLE Type : VIBRATION	Program	ILES/SPIRAL.NGC	Current Line	9.000000000			11-26-2017 05:26:14.756279 AM	0.49425	29863	_
Name : vibMaxMagFreq Data : SAMPLE Type : VIBRATION	Feed rate	8	Feed rate override	100 %			11-26-2017 05:26:14.856471 AM	-0.02488	29871	
- Component : X Type : Linear	Aver						11-26-2017 05:26:14.956691 AM	0.00756	29879	
Name : Xact Data : SAMPLE Type : POSITION	V Pee Actual	10 0521057407		40.0057066202		7 1247990971	11-26-2017 05:26:15.056914 AM	1.25674	29886	
Name : Acom Data : SAMPLE Type : POSITION		-15.5521057457		40.0037000203		tual 7.1247500371	11-26-2017 05:26:15.157085 AM	0.75382	29894	_
Name : Yact Data : SAMPLE Type : POSITION	X Pos Comm	-19.9786200340	Y Pos Comm	48.0906402336	Z Pos Cor	mm 7.1247980000	11-26-2017 05:26:15.257221 AM	1.06206	29902	_
Name : Ycom Data : SAMPLE Type : POSITION	Spindle Spee	d 659	Vibration	0.1697934125			11-26-2017 05:26:15 357393 AM	1 46764	29910	-
- Component : Z Type : Linear	Cutting Farmer						11-26-2017 05:26:15 457603 AM	1 11072	20010	
Ware : Zact Data : SAMPLE Type : POSITION	Cutting Forces					7 011051050701	11 20 2017 05:20 15:457003 AM	0.07245	20000	
Mame : Zcom Data : SAMPLE Type : POSITION		-339.6732972587	Force Y	-246.6842912107	Force	e Z 24.1854652791	11-26-2017 05:26:15:557/87 AM	0.07245	29926	
Component : controller Type : Controller	Cutting Tool		-		_		11-26-2017 05:26:15.657904 AM	1.01339	29934	
Name : program Data : EVENT Type : PROGRAM	ID	001	Туре	End Mill	Diamet	ter 5.00 mm	11-26-2017 05:26:15.758090 AM	-0.49535	29941	
- Name : CurrentLine Data : SAMPLE Type : LINE	Data silawaliantia		0				11-26-2017 05:26:15.858277 AM	-0.18711	29948	_
Name : feedrate Data : SAMPLE Type : PATH_FEEDRATE	Data visualization and analytics 3					11-26-2017 05:26:15.958444 AM	0.68893	29956		
Name : feed_ovr Data : SAMPLE Type : FEEDRATE_OVR	Data Visualization Multi-Data Visualization Machine Status Cutting Forces Vibration						11-26-2017 05:26:16.058618 AM	0.34824	29964	
Name : maxVelocity Data : SAMPLE Type : SPEED	V						11-26-2017 05:26:16.158802 AM	0.33202	29971	_
Name : power Data : EVENT Type : POWER_STATE	Y - Axis : Status						11-26-2017 05:26:16.258967 AM	0.54292	29978	_
Name : alarm Data : EVENT Type : EMERGENCY_STOP	·		,		_		11-26-2017 05:26:16 359162 AM	1 07829	29986	-
Name : execution Data : EVENT Type : CONTROLLER_MODE					- Machine	e Status	11-26-2017 05:26:16 459361 AM	0.36447	29994	-
- Component : CUTTING FORCES Type : Sensor				• I	-	Active	11 20 2017 05:20:10.40000 AM	0.00147	20012	
Name : ForceX Data : SAMPLE Type : LINEAR_FORCE	Active					Ready	11-26-2017 05:26:16:753963 AM	-0.0/301	30012	_
Name : ForceY Data : SAMPLE Type : LINEAR_FORCE				+ $+$ $+$		Interrupted	11-26-2017 05:26:16.860121 AM	0.00/56	30020	_
Name : ForceZ Data : SAMPLE Type : LINEAR_FORCE					26%		11-26-2017 05:26:16.960321 AM	-0.15466	30028	
Component : CUTTING TOOL Type : Sensor					-		11-26-2017 05:26:17.060492 AM	0.54292	30035	_
Name : tool_id Data : EVENT Type : TOOL_ID	interrupted	51		<u>_</u>	E0%		11-26-2017 05:26:17.160662 AM	-0.57647	30042	
Name : tool_coperate Data : EVENT Type : TOOL_TITLE							11-26-2017 05:26:17.260819 AM	0.16979	30049	
Name : Data : EVENT Type : AVAILABILITY							11-26-2017 05:26:17.361016 AM	0.36447	30057	
Wame : Data : EVENT Type : ASSET_CHANGED					_		11-26-2017 05:26:17.461215 AM	1.46764	30064	_
Name : Data : EVENT Type : ASSET_REMOVED	Ready				V ALC: T		11-26-2017 05:26:17.561359 AM	-0.34934	30072	_
	5:20	PM 5:21 PM 5:22	2 PM 5:23 PM 5:24 PM	5:25 PM 5:26 P	PM X - AXIS : I	lime				*
							<			>

SU

Augmented Reality of the Cyber-Physical Machine Tool

iWindow Connectio Machine X 179.9996 ก \bigcirc Machine Y 50.0002 Machine Z 140.0004 Offset X 179.9996 Offset 50.0002 Offset Y Coordinate 140.0004 Offset Z 0.0000 Spindle Speed Feed Rate 0.0000 X Velocity 0.0000 Y Velocity 0.0000 0.0000 Z Velocity X Acceleration 0.0000 Y Acceleration 0.0000 Reference Memory Jog MDI Augmented Reality Z Acceleration 0.0000 **Toggle Physical** Toggle Unsafe Calibrate Load Calibration **Toolpath Display** Milling Volume Feed Rate - 100% Feed Rate + 4 **Toggle Material** Clear Tool Path Toggle CAD Removal Model History tside safe milling volum Toggle Drill Tip 3 Toggle Axis Display Display

User Interface

- 1. AR-assisted process monitoring & machining simulation
- 2. Real-time machining data visualization
- 3. Real-time CNC control
- 4. In-process feed rate control
- 5. Alarms and warnings

THE UNIVERSITY OF

AUCKLAND

AR-assisted process monitoring

AR-assisted machining simulation

-24-

Retrofitting a Legacy System for its Digital Twin

Equipment

- · KUKA KR16 industrial robot and its KR C2 control system
- WiFi-enabled chip (ESP8266)
- Microsoft's Azure Platform
- Know-how

Functions:

- **Background monitoring:** Custom software on the control computer runs in the background and sends machine data via serial port to the connected chip. The chip connects to the wireless network and forwards the data via internet using an IoT messaging protocol (MQTT). This method deals with hardware and software limitations and does not interfere with existing setup or usage.
- **Mobile visualisation:** The data can be accessed and visualised with near real-time capability through a custom website. It is not limited to a local machine, application or specific platform.
- Storage and analytics. A database stores the received data. Historical data can be used to analyse the uptime or reconstruct the robots movements if necessary (e.g. QA). Custom tools can be developed or available services used to connect to the database and performer further sophisticated analyses.

Prospective industrial applications

- DT development for a legacy device
- Extension of asset's lifetime

THE UNIVERSITY OF

AUCKLAND

7 F A L A N D

222

- Mobile and worldwide asset monitoring
- Optimisation of machine uptime
- Assessment of historical data for reconstruction and QA

Robot Logger & Visualiser

Retro-fitting for data acquisition and analytics

(To see the demo click the image)

Final Words

- The crux of Industry 4.0 is cyber-physical systems (CPS)
- The key component of CPS is digital twin– digitisation of physical systems
- Digital twin is still a "hot" topic, but most of all an enabling tool for smart manufacturing
- ISO standards on digital twin framework for manufacturing (2021)
- Digital twin examples

THANK YOU FOR YOUR ATTENTION!

Acknowledgement

Yuqian Lu, David Tomzik, Yuan Lin, Chao Liu, Martin Zhu, Sarah Huang, Tang Ji

http://www.dibadata.com/lab.html

Laboratory for Industry 4.0 Smart Manufacturing Systems (http://www.mech.auckland.ac.nz/en/about/ourresearch/research-facilities/LISMS.html) (https://lisms.auckland.ac.nz/)

