Multiscale modelling strategy for predicting fatigue life of steels

Kazuki Shibanuma The University of Tokyo

Outline

- 1. Research background
- 2. Experimental observation
- 3. Model development
- 4. Validation of the model
- 5. Summary

Outline

1. Research background

- 2. Experimental observation
- 3. Model development
- 4. Validation of the model
- 5. Summary

Influence of microstructure on fatigue life

No theory/model to quantitatively explain the influence of microstructure on fatigue life

*Taira et al., Grain-size effect on crack nucleation and growth in long-life fatigue of low-carbon steel, ASTM STP 675 (1979) 135-173. **Tanaka, Improvement of metal fatigue strength by grain refinement and residual stresses, Reports Faculty Sci. Tech. Meijo Uni. 48 (2008) 67-70.

Objective of the present study

Ferrite-Pearlite Steel

- Most widely used as structural steel
- Two-phase banded microstructure

Development of a model for predicting fatigue life and limit based on microstructural information

Outline

- 1. Research background
- 2. Experimental observation
- 3. Model development
- 4. Validation of the model
- 5. Summary

Test and observation conditions

Sampling direction

Tension/compression test using smoothed specimen

Loading condition Stress amp.: 150MPa Stress ratio: -1 Frequency: 10Hz

Observation on crack initiation and growth process

Observation results

Crack initiation site ($N_{\rm f} = 218,987$)

- A "crack" is clearly observed for less than 1% of fatigue life.
 - \Rightarrow It is difficult to define crack initiation life in high cycle fatigue of steels.
- Damage caused by activation of multiple slip systems clearly increased after the crack tip passed the first grain boundary.
 - \Rightarrow Stage I and Stage II may be defined by the first grain boundary.

Outline

- 1. Research background
- 2. Experimental observation
- 3. Model development
- 4. Validation of the model
- 5. Summary

Modelling concepts

Relationship between microstructure and fatigue life and limit

• Input: Microstructural information ⇒ Output: Fatigue life and limit

Calculation on fatigue life

- It was difficult to define "crack initiation" life.
- Entire fatigue life is estimated from "crack growth" life alone.

Reducing dimension of the problem

Fatigue crack initiation and growth: Complicated 3D phenomenon

Characteristic features:

- A crack generally initiates at a surface.
- Crack growth direction is approximately orthogonal to that of the maximum principal stress.

Multiscale model synthesis

• Integrating multiple models with large scale differences

Outline of the proposed model

Outline of the proposed model

Model of finite element analysis

Role of model of FEA:

THE UNIVERSITY OF TOKYO

Calculation of strain amplitude field and definition of an active zone

Cyclic stress-strain relationship: Empirical formula by Li et al.*

$$\varepsilon_{eq}^{a} = \varepsilon_{e}^{a} + \varepsilon_{p}^{a} = \frac{\sigma_{eq}^{a}}{E} + \left(\frac{\sigma_{eq}^{a}}{K}\right)^{\frac{1}{m}}$$

 ε_{eq}^{a} : equivalent strain amplitude σ_{eq}^{a} : equivalent stress amplitude

Input data: Only monotonic tensile properties

 $\sigma_{\rm B}$: tensile strength $\sigma_{\rm Y}$: yield strength $r_{\rm A}$: reduction area

*J. Li et al., An improved method for estimation of Ramberg-Osgood curves of steels from monotonic tensile properties, Fatigue Fract. Eng. Mater. Struct. 39 (2016) 412-426.

Outline of the proposed model

Geometries of ferrite grains/pearlite colonies

2D assumption Simplification on microstructure modelling

Grain orientation is assigned for each grain

Spatial grain distribution in surface plane

Active zone: Surface plane where a crack is possibly initiated Surface elements: Simplification of the respective grain locations (i.e., the exact location of a grain in an area element is not considered.)

Spatial grain distribution in inside plane

Spatial distribution is modelled corresponding to crack shape transition

Outline of the proposed model

Basic theory

Fatigue life: Calculated from only crack growth simulation

The interaction theory between a crack and grain boundaries*

- Based on Dugdale model and Continuously distributed dislocation theory
- Grain boundary (misorientation) effects

Slip band length c:

$$\frac{\pi}{4} - \frac{\tau_j^{\rm f}}{\Delta \tau_j} \arccos\left(\frac{a}{c}\right) - \sum_{i=j+1}^{\infty} \left(\frac{\tau_i^{\rm f}}{\Delta \tau_i} - \frac{\tau_{i-1}^{\rm f}}{\Delta \tau_{i-1}}\right) \arccos\left(\frac{l_{i-1}}{c}\right) = 0$$

Crack tip sliding displacement ΔCTSD:

$$\Delta \text{CTSD} = f(a/b) \cdot \frac{4(1-\nu)}{\pi G} \left[2a\tau_{j}^{f} \ln\left(\frac{c}{a}\right) + \Delta\tau_{j} \sum_{i=j+1}^{\infty} \left(\frac{\tau_{i}^{f}}{\Delta\tau_{i}} - \frac{\tau_{i-1}^{f}}{\Delta\tau_{i-1}}\right) g(a,c,l_{i-1}) \right]$$

where $g(a,c,l) = l \ln\left|\frac{\sqrt{c^{2} - l^{2}} + \sqrt{c^{2} - a^{2}}}{\sqrt{c^{2} - l^{2}} - \sqrt{c^{2} - a^{2}}}\right| - a \ln\left|\frac{a\sqrt{c^{2} - l^{2}} + l\sqrt{c^{2} - a^{2}}}{a\sqrt{c^{2} - l^{2}} - l\sqrt{c^{2} - a^{2}}}\right|$

Crack growth rate da/dN:

$$\frac{da}{dN} = C(\Delta \text{CTSD}^n - \Delta \text{CTSD}_{\text{th}}^n)$$

*Tanaka et al., Modelling of small fatigue crack growth interacting with grain boundary, Eng. Fract. Mech. 24 (1986) 803-819. **Schaef, Marx, A numerical description of short fatigue cracks interacting with grain boundaries, Acta Mater. 60 (2012) 2425–2436. Grain boundaries

Basic theory

Fatigue life: Calculated from only crack growth simulation

The interaction theory between a crack and grain boundaries*

- Based on Dugdale model and Continuously distributed dislocation theory
- Grain boundary (misorientation) effects

_Г Input data —

• Friction strength to au • Crack length a move dislocations au_i^{f}

- Output data

- Dislocation density
- Slip band length *c*
- Crack tip sliding displacement range $\Delta CTSD$
- Crack growth rate da/dN
- Fatigue life *N*_f

*Tanaka et al., Modelling of small fatigue crack growth interacting with grain boundary, Eng. Fract. Mech. 24 (1986) 803-819. **Schaef, Marx, A numerical description of short fatigue cracks interacting with grain boundaries, Acta Mater. 60 (2012) 2425–2436. Grain boundaries

Friction strength to move dislocations (Material resistance)

Material resistance:

<u>Friction strength to move dislocations $\tau_i^f \implies$ Yield shear strength of single crystal</u>

-Hall-Petch law $\sigma_{\rm Y} = \sigma_0 + \frac{k}{\sqrt{d_{\rm ave}}}$

Friction strengths $\tau_{\rm F}^{\rm f}$ (ferrite), $\tau_{\rm P}^{\rm f}$ (pearlite)

$$\frac{1}{2}\sigma_0 = (1 - V_f^P)\tau_F^f + V_f^P\tau_P^f \quad \text{(Linear mixture rule)}$$

 $\frac{\tau_{\rm F}^{\rm f}}{\tau_{\rm P}^{\rm f}} = \frac{198}{276}$ (hardness ratio, empirical knowledge*)

*Shoji, Simulation-based method for hierarchal design to improve ductile crack growth resistance of structural component, Int. J. Fract. 192 (2015) 167-178.

Effective shear stress (Driving force)

Crack shape Driving force: Effective shear stress $\Delta \tau_i$ Surface Surface Equivalent stress tensor corresponding to total strain tensor $\sigma_{\rm eq} = 2(\mathbf{C}_{\rm e}: \boldsymbol{\varepsilon}_{\rm e} + \mathbf{C}_{\rm p}: \boldsymbol{\varepsilon}_{\rm p})$ Stage Stage II Strain distribution $\Delta \tau_i$ considering slip system of BCC crystal $\Delta \tau_{i} = \max_{k=1\dots6} [\max_{l=1,2} [(\mathbf{n}_{k})_{i}^{\mathrm{T}} \cdot \Delta \boldsymbol{\sigma}_{i-1} \cdot (\mathbf{m}_{kl})_{i}]]$ where $\Delta \boldsymbol{\sigma}_{i-1} = \begin{cases} \Delta \boldsymbol{\sigma}_{eff} & (i=j) \\ \Delta \tau_{i-1} (\mathbf{n}_k)_{i-1}^T \times (\mathbf{m}_{kl})_{i-1} & (i \ge j+1) \end{cases}$ *j*: grain no. where the crack tip is located $oldsymbol{\sigma}_{eq}$ (FEA) Equivalent K *l*-th <111> direction on *k*-th {110} plane Crack opening/closure $(\mathbf{m}_{kl})_{l}$ Effective remote stress tensor range; k-th {110} plane of *i*-th grain $\Delta \boldsymbol{\sigma}_{\rm eff} = \boldsymbol{\sigma}_{\rm eff}[\sigma_{\rm max}] - \boldsymbol{\sigma}_{\rm eff}[\sigma_{\rm op}]$

Empirical formula

 $\sigma_{\rm eff}$ (remote stress)

Crack

stress

opening

Evaluation of fatigue life

Fatigue life of the specimen $N_{\rm f}$:

the minimum number of cycles to failure at all the crack initiation sites

Outline

- 1. Research background
- 2. Experimental observation
- 3. Model development
- 4. Validation of the model
- 5. Summary

Test steels

Chemical compositions [mass%]

Steel	С	Si	Mn	Р	S	Al	Ν
А	0.18	0.15	1.00	< 0.002	0.0005	0.019	0.0008
В	0.087	0.15	1.00	< 0.002	0.0005	0.019	0.0008
С	0.14	0.36	1.54	0.014	0.002	-	-

Monotonic tensile properties and friction strength

Steel	Yield strength [MPa]	Tensile strength [MPa]	Reduction in area [-]	Ave. grain size [µm]	Volume fraction of pearlite [%]
A	216	430	0.72	56.6	27
В	260	395	0.79	24.5	13
С	368	538	0.78	15.4	21

Test conditions

Nine types of fatigue tests

• Three types of steels

• Three types of specimens

Prediction of S-N curves

Identification of constants in crack growth law:

 $\frac{da}{dN} = C(\Delta \text{CTSD}^n - \Delta \text{CTSD}_{\text{th}}^n)$

Fitting for results of Smooth T/C of steel A $C = 22.2, n = 2.0, \Delta CTSD_{th} = 7.8 \times 10^{-2} \mu m$

Prediction of S-N curves

Identification of constants in crack growth law:

 $\frac{da}{dN} = C(\Delta \text{CTSD}^n - \Delta \text{CTSD}_{\text{th}}^n)$

Fitting for results of steel A under Smooth T/C $C = 22.2, n = 2.0, \Delta CTSD_{th} = 7.8 \times 10^{-2} \mu m$

Prediction of S-N curves

Identification of constants in crack growth law:

 $\frac{da}{dN} = C(\Delta \text{CTSD}^n - \Delta \text{CTSD}_{\text{th}}^n)$

Fitting for results of steel A under Smooth T/C $C = 22.2, n = 2.0, \Delta CTSD_{th} = 7.8 \times 10^{-2} \mu m$

- Proposed model could successfully simulate all of experiments
- Fatigue life of steels can be predicted from crack growth life alone

Outline

- 1. Research background
- 2. Experimental observation
- 3. Model development
- 4. Validation of the model
- 5. Summary

Summary

A model for predicting fatigue life and limit of steels Experimental observation

• It was difficult to define crack initiation life in high cycle fatigue of steels.

Model development

- Prediction of fatigue life and limit based on microstructural information
- Total fatigue life calculated form crack growth life alone
- Reducing the dimension of problem as a 2D problem with 2 steps
- Multiscale model synthesis of three sub-models

Model validation

- Experiments using three types of steels and three types of specimen
- Fatigue lives and limits were successfully predicted.
- Fatigue life could be predicted from crack growth life alone.

References

K. Shibanuma*, K. Ueda, H. Ito, Y. Nemoto, M. Kinefuchi, K. Suzuki, M. Enoki Materials and Design 139 (2018), 269-282.

Model for predicting fatigue life and limit of steels based on micromechanics of small crack growth

H. Ito, Y. Suzuki, H. Nishikawa, M. Kinefuchi, M. Enoki, K. Shibanuma*

Multiscale model prediction of ferritic steel fatigue strength based on microstructural information, tensile properties, and loading conditions (no adjustable material constants)

International Journal of Mechanical Sciences 170 (2020), 105339

H. Zhou, Z. Liu, M. Kinefuchi, K. Shibanuma*

Multiscale modelling strategy for predicting fatigue lives and limits of steels based on a generalised evaluation method of grain boundaries effects

International Journal of Fatigue 158 (2022), 106749

