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Motivation Statement

In times of rising energy costs, flexible loads in the industry can be a key factor for 

system stability but also for industrial competitiveness.
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• Load flexibility is required to integrate renewable 

energy and to reduce consumption in peak-

demand periods

• Rescheduling of industrial loads contributes to 

system stability of the electricity sector and also to 

cost reduction of the producing industry

• Advanced digital infrastructure provides 

decision-suppport in utilising demand side 

flexibility 

• This presentation highlights…

 flexibility advantages through data-driven 

simulations (digital models vs. digital twins)

 economic benefits of flexible industrial

loads (model-based vs. model-free frmw.)

Source: Dena (German Energy Agency). „Industrial Demand Side Flexibility in China - German Experiences – Status Quo and Potential in China – Policy and Market 

Recommendations.” 2019.
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Demand Side Management

Demand side management is the adjustment (reduction, increase, shift) of a part of 

the consumption in a specific period of time, e.g., due to the current spot market price.
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Source: Dena (German Energy Agency). „Industrial Demand Side Flexibility in China - German Experiences – Status Quo and Potential in China – Policy and Market 

Recommendations.” 2019.

Economic potential of potential flexibility of industrial loads need to be assessed. Due to the 

complexity of the industrial processes, digital twins or models are helpful. 

(Dena,2019)
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Digital Twin

A Digital Twin is a virtual representation that serves as the real-time digital 

counterpart of a physical object or process.
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• Digital Twins are virtual copies of physical 

systems which comprise quantitative decision-

support tools

 Flexibility management of industrial loads

 Data-driven decision-support or -making

• Digital Twins, Digital Shadows, and Digital 

Models are differentiated by their data integration 

levels

• Digital Twins have fully integrated data flows 

in both directions in contrast to Digital Models 

or Shadows

Source: Nikula, Riku-Pekka, Marko Paavola, Mika Ruusunen, and Joni Keski-Rahkonen. "Towards online adaptation of digital twins." Open Engineering 10, no. 1 (2020): 776-783. 

https://doi.org/10.1515/eng-2020-0088.

(Nikula et al., 2020)
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Digital Production

To fully harvest the power of a Digital Twin in optimising the production process in 

real-time, a fully data-driven and integrated production process is required. 
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Process

Source: Glatt, Moritz, et al.. "Modeling and implementation of a digital twin of material flows based on physics simulation." Journal of Manufacturing Systems 58 (2021): 231-245. 

https://doi.org/10.1016/j.jmsy.2020.04.015. Wagner, Raphael, et al. "Challenges and potentials of digital twins and industry 4.0 in product design and production for high performance 

products." Procedia CIRP 84 (2019): 88-93. https://doi.org/10.1016/j.procir.2019.04.219.

(Glatt et al., 2021)

1,2

Practical challenges of

digital twins:

Integrated data flows but 

also sensors and controllers 

are missing (Wagner et al, 

2019)

 IoT is the basis for digital 

decision-support

Examples of quantitative 

decision-support tools:

1) Mathematical optimisation
2) Reinforcement learning

 Methods need to be

aligned with the problem



Flexibility Management09.09.2022 Webinar 

Decision Support

Quantitative decision-support tools for digital processes are moving from model 

predictive to cognitive adaptive frameworks.
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Process

Source: Adams, Derrick, Dong-Hoon Oh, Dong-Won Kim, Chang-Ha Lee, and Min Oh. "Deep reinforcement learning optimization framework for a power generation plant considering 

performance and environmental issues." Journal of Cleaner Production 291 (2021): 125915. https://doi.org/10.1016/j.jclepro.2021.125915.

(Adams et al., 2021)

Setpoint decisions are made by

controlroom operators:

- feedback from the plant

- previous data collected

- own experience

- retrospective modeling results

 operators with high domain 

knowledge (actions affect the 

steadiness of the operation, 

profits, energy conservation) 

(Adams et al., 2021)

Setpoint decisions are made

by computer agents:

- Agents are operator

- Process actions are 

optimised in line with the 

reward function

- Environment is given by 

process and is stochastic

 Agent gains experience 

from the domain knowl-edge 

of the environment to make 

the right decisions
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Decision Support

Quantitative decision-support tools for digital processes are moving from model 

predictive to cognitive adaptive frameworks.
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Process

Source: Adams, Derrick, Dong-Hoon Oh, Dong-Won Kim, Chang-Ha Lee, and Min Oh. "Deep reinforcement learning optimization framework for a power generation plant considering 

performance and environmental issues." Journal of Cleaner Production 291 (2021): 125915. https://doi.org/10.1016/j.jclepro.2021.125915.

(Adams et al., 2021)

Reinforcement learning Mathematical optimisation
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Case Studies

We applied linear optimisation and reinforcement learning to determine benefits of 

load flexibility in industrial processes – hydrogen production and datacenter cooling.
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• Optimisation modelling approach

• Linear Programming/ CPLEX-Solver 

(IRPopt framework with perfect foresight)

• Environment engineering modeling 

(constraints and equations)

• Objective function regarding costs 

minimisation subject to constraints

• Machine learning approach

• Model-free Reinforcement Learning / 

Soft Actor Critic (SAC) (algorithm that 

optimizes a stochastic policy)

• State and actions definitions (data-based 

models)

• Weighted objective function regarding 

costs and temperature level 

• Action is output of a neural network

Case 2: Datacenter Cooling ProcessCase 1: Chlor-Alkali Electrolysis Process

Electricity costs saving potential by applying load shifting / flexible production on real-time prices

- real time electricity prices at the spot market in Germany and Denmark are highly volatile (stochastic) -
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Case 1: Representation

The linear optimisation model IRPopt (Scheller et al., 2018, 2019) was used to optimise 

the procurement costs for electricity in the year 2019 for Germany.
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Interlinked physical technologies and processes of the 

Chlor-Alkali Electrolysis plant

Virtual representation of the Chlor-Alkali Electrolysis plant 

with the help of the optimisation model IRPopt

Source: Scheller, Fabian, et al. "Towards integrated multi-modal municipal energy systems: An actor-oriented optimization approach." Applied Energy 228 (2018): 2009-2023. 

https://doi.org/10.1016/j.apenergy.2018.07.027. Scheller, Fabian, et al.. "Provoking residential demand response through variable electricity tariffs-a model-based assessment for 

municipal energy utilities." Technology and Economics of Smart Grids and Sustainable Energy 3, no. 1 (2018): 1-20. https://doi.org/10.1007/s40866-018-0045-x.

Focus was on the optimal operation of the electroyser process with respect to the electricity prices 

at the spot market by taking into account the storage, pipeline, and consumer restrictions.
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Case 1: Results I

Operation with load shifting could save ~6% of the electricity costs compared to the 

actual operation in the year 2019 (Lerch et al., 2022).
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• Optimal plant operation leads to 5.8% 

electricity cost and 2.7% CO2 emission 

savings compared to actual operation 

• Actual operation (black squares) and the 

electricity prices (green line) are low but 

positively correlated (0.21)

• Demand Side Management case (blue 

circular dots) and the electricity prices (green 

line) are negatively correlated (-0.83)

Source: Lerch, Philipp, Scheller, Fabian,  David G. Reichelt, and Thomas Bruckner. "Flexibility cost savings potential for chlor-alkali electrolysis plants: a model-based analysis of 

technical and procedural efficiencies." (to be submitted), 2022.

Sorted annual price curve interrelations 
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Case 1: Results II

As part of the analysis, we also examined the cost benefits of using load 

management and efficiency gains (Lerch et al., 2022).
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• Technical increases in efficiency with 

regard to the electrolyser (0.43 to 0.49) result 

in a cost reduction of approx. 2%

• Thermal improvements through waste 

heat utilization during start-up (1/3 of the 

previous costs) result in cost savings of 

approx. 0.5%.

Source: Lerch, Philipp, Scheller, Fabian,  David G. Reichelt, and Thomas Bruckner. "Flexibility cost savings potential for chlor-alkali electrolysis plants: a model-based analysis of 

technical and procedural efficiencies." (to be submitted), 2022.
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Case 2: Representation

We applied a SAC algorithms with a LSTM instead of a feed-forward network on a 

simulated two-zone data centre case study of EnergyPlus (Moriyama et al., 2018).
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Source: Moriyama, Takao, et al. "Reinforcement learning testbed for power-consumption optimization." In Asian simulation conference, pp. 45-59. Springer, Singapore, 2018. Biemann, Marco, et 

al. "Experimental evaluation of model-free reinforcement learning algorithms for continuous HVAC control." Applied Energy 298 (2021): 117164. https://doi.org/10.1016/j.apenergy.2021.117164

Simplified description of the air loop in the 

HVAC system of the data centre east zone.

Simulation environment of the virtual agent 

representation.

Optimal cooling actions of the agent aimed at maintaining the temperature level in a certain range 

by simultaneously reducing the electricity procurement costs.
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Case 2: Results I

While there was a cost saving potential of 2% in the year 2019 compared to a PID 

controller, the SAC algorithm also kept the temperature level (Biemann et al., 2022).
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Source: Biemann, Marco, Philipp Gunkel, Fabian Scheller, Lizhen Huang, and Xiufeng Liu. "Reinforcement learning with real -time pricing in HVAC control." (to be submitted), 2022.

• We divided the dataset into training data from 

2013 to 2018 and test data for 2019 (spot 

market data from Denmark)

• SAC is able to reduce energy costs by 

2.2% compared to a proportional–integral–

derivative (PID) controller

• Temperature maintained more or less in the 

specified range (red line recommended level, 

green line safety level)

• Price spikes and non-stationarities in the 

electricity price data were/ are a significant 

challenge
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Case 2: Results II

When simply minimising consumption, the algorithm is able to maintain the 

temperatures in the range quite well (Biemann et al., 2022).
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Source: Biemann, Marco, Philipp Gunkel, Fabian Scheller, Lizhen Huang, and Xiufeng Liu. "Reinforcement learning with real -time pricing in HVAC control." (to be submitted), 2022.

Focus on reduced energy consumptionFocus on cost reduction
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Method Selection

Linear optimisation and reinforcement learning frameworks are solving the same 

problem (and leading to beneficial results), but under different assumptions.
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 Logical problem formulation

 Adequate performance

 Safe actions

 Fluctuation handling

‒ Centralised decision-making

‒ Low adaptability

‒ High-level of domain knowledge

‒ Predictions of exogenous variables

‒ Computational time

 Low-level of domain knowledge

 High scalability and adaptability 

 Decentralised and cooperative coordination

 Adequate for complex dependencies

 Fast deployment

‒ Undesirable actions or safety issues

‒ Data and time demanding training 

‒ Sim-to-Real problem 

‒ Exception handling

Reinforcement learning Linear optimisation



Flexibility Management09.09.2022 Webinar 

Thank you for listening

“Digital twins” for industrial energy management: enhancing demand-side flexibility 

with linear optimisation and reinforcement learning
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Highlights

• Digital Twins but also Digital Models provide decision-suppport in utilising demand side flexibility for 

complex industrial environments

• To fully harvest the power of a Digital Twin in optimising the production process in real-time, a fully 

data-driven and integrated production process is required

• Two industrial case studies demonstrated the benefits of digital support in the industry – the methods 

linear optimization and reinforcement learning are helpful to assess the potential of load shifting


