West Virginia University Benjamin M. Statler College of Engineering and Mineral Resources Department of Industrial and Management Systems Engineering

Smart Manufacturing Technologies & the road to servitization

September 07, 2022

Morgantown, WV

Agenda

- 1. Introduction
- 2. Smart Manufacturing Technologies
- 3. Servitization of Industrial Assets
- 4. Crucial Role of Smart Services
- 5. Conclusions

Smart Manufacturing Lab

Smart Manufacturing Systems

- Multi-stage connected CPS
- Digital Transformation (MNEs & SMEs)

Machine Learning / AI in Manufacturing

- Machine tool data analytics to model quality, energy, etc. (descriptive to prescriptive)
- Hybrid modeling (physics-based & data-driven)

IIoT / Smart Manufacturing Platforms

- SM Apps/Services on IIoT platforms
- New non-ownership business models

Dr. Thorsten Wuest thwuest@mail.wvu.edu

Smart Manufacturing & Servitization

- Focus on *connectivity* on & beyond manufacturing shop floor
 Need to rethink *Business Models*
- Connects the *virtual world* and the *physical world*
- Fueled by *data* and *data analytics*
- Enables competitive manufacturing of high-quality products
- Not optional!

			CPS	
			Cyber ↓ ℃ ↓ ↓ ↓ ↓ ↓ Physical	
		PLC / Robots	4th Industrial Revolution Internet of Things/Services	
	Assembly Line	3 rd Industrial Revolution IT automated production		Complexity
Power Loom	2 nd Industrial Revolution Division of labor Mass production			Increasing (
1 st Industrial Revolution Mechanization of Labor				
18 th early tury cen	y 20 th ea tury 197	rly too 70 th (201	day 15+)	t
Devel	opment of Ma	nufacturing Sy	stems	

Source: Wuest, T. (2019). Smart manufacturing builds opportunities for ISEs. ISE Magazine, 51(4), 40-44.

late cen

SMART MANUFACTURING PRINCIPLES / CONNECTIVITY / VIRTUALIZATION / DATA UTILIZATION

Smart Manufacturing Technologies

Al, Machine Learning & Advanced Simulation

0

Additive Manuf. IIoT &

CPS

AR, VR, & Digital Twins

Automation & Robotics

Cybersecurity

Blockchain Smart Sensor Systems

(()

5G Networks

Cloud, Fog,

& Edge Computing

Wuest, T., Romero, D., Khan, M., & Mittal, S. (2022). The Triple Bottom Line of Smart Manufacturing Technologies: An Economic, Environmental, and Social Perspective, pp. 311-332. In: Kurz et al. (2022). Handbook of Smart Technologies: An Economic and Social Perspective. Routledge, London.

SMART MANUFACTURING MARRIES TECHNOLOGY, DATA AND HUMAN INGENUITY

Servitization

- Integration of products and services into innovative offerings
- Transition of manufacturers' value propositions from sale of products to incorporating additional services with their products or by offering their products 'as a service'
- Targeted to fulfil *customers' needs*
- *Decouple consumption* from production
- Technology *key enabler* of servitized business models

Jet Engines

6

Servitization – Key Differences

User of Equipment

Manufacturer of Equipment

WestVirginiaUniversity SMART MANUFACTURING LAB

Traditional Business Model

Servitized Business Model

Servitization of Industrial Assets - Selected Benefits

Operational Benefits

- Competition outside of 'cost'
- Monetize 'installed base' (No. unit sales vs. No. of units in operation)
- Continuous revenue generation
- Data & insights in operation of large number of machine tools (valuable insights for next gen. developments, optimizing operations/parameters, pred. maintenance, etc.)

Strategic Benefits

- Lock-in effect (customers)
- Lock-out effect (competitors)
- Reduction of direct competition
 through customization
- ... customer demand!

- **Sustainability Benefits**
- Less waste
- Extended lifecycles

• ..

Dr. Thorsten Wuest thwuest@mail.wv<u>u.edu</u>

۲

Servitization comes in different shapes and forms

- Different business models are often offered simultaneously.
- It is a *collaborative process* and evolution to establish the best 'fit'

How does that connect to Smart Services?

- *Risk and responsibility* for assets remain with manufacturer in servitized BM
- Including *variating levels of service* responsibilities, e.g.,
 - Remote monitoring via sensors systems
 - Training and/or managing of local operators & maintenance teams
 - Scheduled and/or emergency service provision ('guaranteed uptime')
 - Etc.

With increasing numbers of systems in the field, that can mean significant travel ('time waste')

Smart Manufacturing Tech. for Smart Services

Al, Machine Learning & Advanced Simulation	Cloud, Fog, & Edge Computing	Additive Manuf. IIoT & CPS	Predictive analytics for tool wear monitoring, energy optimization, predictive and prescriptive maintenance.					
		<u>(</u>]	Digital Twins	Automation & Robotics	Cybersecurity			
						Blockchain	Smart Sensor Systems	5G Networks

West Virginia University SMART MANUFACTURING LAB SOURCE: V

: Wuest, T., Romero, D., Khan, M., & Mittal, S. (2022). The Triple Bottom Line of Smart Manufacturing Technologies: An Economic, Environmental, and Social Perspective, pp. 311-332. In: Kurz et al. (2022). Handbook of Smart Technologies: An Economic and Social Perspective. Routledge, London.

Smart Manufacturing Tech. for Smart Services

Wuest, T., Romero, D., Khan, M., & Mittal, S. (2022). The Triple Bottom Line of Smart Manufacturing Technologies: An Economic, Environmental, and Social Perspective, pp. 311-332. In: Kurz et al. (2022). Handbook of Smart Technologies: An Economic and Social Perspective. Routledge, London.

Smart Manufacturing Tech. for Smart Services

West Virginia University SMART MANUFACTURING LAB SOURCE:

: Wuest, T., Romero, D., Khan, M., & Mittal, S. (2022). The Triple Bottom Line of Smart Manufacturing Technologies: An Economic, Environmental, and Social Perspective, pp. 311-332. In: Kurz et al. (2022). Handbook of Smart Technologies: An Economic and Social Perspective. Routledge, London.

Smart Services must embrace Servitization

- Servitization is a process for both, provider/manufacturer and user/customer
- SM tech enabled smart services play crucial role in sustaining the servitized BMs
- And vice versa, future Smart Services must be *embedded in servitized BM* to activate their full potential

Key messages of today's talk

Smart Mfg. technologies such as AR create new opportunities

Much progress in implementing digital solutions in manufacturing Difficult to translate technological progress in business success Companies with digital core AND mindset have advantage Smart Mfg. needs to be approached holistically, and that includes rethinking business models and value proposition

PPU/PPO BMs are promising, yet their development is challenging

Tech.-enabled Smart Services are crucial element of servitized mfg. BMs!

Thank You!

www.digitalsupplynetwork.com

Contact:

Thorsten Wuest, Ph.D. Associate Professor Smart Manufacturing

West Virginia University Industrial and Management Systems Engineering 347 Engineering Sciences Building Morgantown, WV 26506-6070, USA

thwuest@mail.wvu.edu www.thorstenwuest.com

